The aerospace industry, whether for commercial aviation, defense applications, or space launch and exploration, requires complex material alloy systems to meet the needs of such extreme environments. Components, primarily Nickel, Titanium, and Aluminum-based, must have specific properties in specific locations.
ATI’s deep understanding of these alloys enables our processing of complicated systems to achieve the right structure, properties, and processing to meet each application’s requirements. Through the extensive use of modeling, we achieve right-first-time exponentially faster, eliminating physical waits, using less energy, and without wasting materials.
Metallurgy is the original frontier of micro and nanomaterials. Modeling supports every step of our integrated processes, giving us a micro, and even nano-level, understanding of what’s happening in the material:
• Melt, including Powder Materials: ensuring chemical homogeneity and micro cleanliness
• Billet: producing a uniform microstructure with exactly the right type, size, and distribution of grains;
• Forging: transforming the geometry and structure within tight tolerances making the same part every time;
• Heat treat: combined with forging to ultimately deliver the needed properties, in the right location required for the component;
• Machining: achieving the physical form of the component while preserving the structure on the surface and in the core
ATI uses modeling and artificial intelligence to optimize our physical processes to deliver the required physical, mechanical and microstructural properties required of our components to withstand the extreme environments inherent in wide-ranging aerospace applications: exposure to highly corrosive materials, high loads/stresses, and temperatures so high that under normal conditions the materials would start to melt.
The aerospace industry’s key drivers for performance improvements include lower weight, faster flight, increased fuel efficiency, reduced noise, and reduced emissions. Advances in materials science help make these achievements possible. This evolution, pragmatically, occurs in two design—speed and efficiency—with desired outcomes driving development.